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Abstract

In this paper, an optimal longitudinal slip ratio system for real-time identification of electric

vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road

surface. First and foremost, the optimal longitudinal slip rate torque control can be identified

in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly,

the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation

model is proposed to verify the algorithm with simulation, and we find that the slip ratio corre-

sponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is

applied to traction control system (TCS). The results showed that the method can effectively

identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in

the meantime, it can improve the accelerated stability of electric vehicle with traction control

system (TCS).

1.Introduction

CONVENTIONAL internal combustion engine (ICE)-driven vehicles have incurred tremen-

dous fossil fuel consumption, carbon footprint, and poisonous tailpipe emissions [1]. As far as

possible to reduce carbon emissions on the one hand can improve the climate problem, on the

other hand can also significantly impact the nature of emissions-optimal on-road power man-

agement [2]. So currently, it is imperative to explore the full carbon dioxide-saving potential

for electric vehicles [3]. One of the major advantages of electric vehicles is the quick and pre-

cise torque response of the electric motor, which realizes a novel traction control system [4].

Torque control of electric motor via current gives the advantage of simplicity and fast response

over the complicated torque control of an internal combustion engine which may depend on

several parameters ranging from fuel valve angle to gas pedal position and several delay factors

[5]. It is the developing trend of new generation electric vehicle driving systems.

Active safety technologies like Anti-Lock Braking System (ABS), Traction Control System

(TCS) and Electronic Stability Control (ESC) have become hugely successful in recent decades.

They have dramatically improved the traction and traffic ability, stability and safety of vehicles

[6–8]. As for the control system, the ability to respond in real-time is a key requirement.

Fuzzy-logic-based ABS/traction control could substantially improve longitudinal performance

and offer significant potential for optimal control of driven wheels [6]. And the establishment
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of fuzzy rules and the selection of related parameters are very dependent on experience, it can

reduce a lot of computation and has good robustness if parameters are chosen reasonably. PID

control is widely used in control systems because of its clear structure and quick calculation,

which make it all eligible for real-time control [9]. In in-wheel motor driven vehicles makes

direct control of traction torque TCS possible, obviating the need to perform the colligation

control of the power train, thus greatly simplified the control system structure. For instance,

an anti-skid controller with PI regulator is designed and analyzed, based on back-EMF

observer and dynamic model error observer [10]. The PID controller is widely employed in

the industry, as well as in the TCS system. The PID control does not prevail now, however,

compared with other strategies, it still has the value in engineering applications [11]. In this

paper, the PID control is proposed into the TCS control of in-wheel motor driven vehicles.

One of the key points in the research field of automobile chassis control is to achieve the

optimum slip rate and to identify the sliding state. Currently scholars have proposed theories

and methods such as references [12–24]. A recursive least squares algorithm with forgetting

was used to estimate the model parameters [18]. The model parameters have been optimized

by executing the nonlinear least-squares algorithm, given large amounts of EIS test data [19].

The adaptive unscented Kalman filter (AUKF), fractional Kalman filter(FKF) and the extended

Kalman Filter(EKF) is a dynamic system which is considered by Kalman filter, which is often

used in target tracking system [20,21]. CHIA-SHANG LIU and HUEI PENG used modified

adaptive observer and least square algorithm to estimate the road surface condition [14]. A

Kalman filter is applied to a physical model of tire-road friction based on the wheel slip, using

only standard sensors [12]. The optimal slip ratio is defined by the value corresponding to the

peak friction factor between the road and tire. It is also the key technology for estimating road

adhesion in real time for vehicle chassis control systems [4, 22]. So far, the technology, espe-

cially the identification method of optimum slip ratio, has some room for improvement in

terms of accuracy. Currently, the general method uses existing data which is gained by check-

ing tables, and is difficult to adapt to the complexity of the roads [3, 6–7]. Li, et al, made the

torque increase or decrease to control the wheel slip ratio in idea scope [22].

In recent years, many theoretical studies based on tire-road friction estimation are con-

ducted by scholars. Firstly, it is commonly assumed that the tire friction and the slip ratio have

a linear relationship at low slip ratios, the slip state can be calculated using the slope change of

the friction vs slip ratio curve generated by a Kalman filter. Secondly, the slip state can be cal-

culated using the slip ratio and the adhesion coefficient; the slip ratio is obtained by calculating

vehicle speed and rotational velocity, and the adhesion coefficient is predicted using the ex-

tended Kalman filter (EKF). Thirdly, based on global position system (GPS), the sliding state

can be calculated by the lateral acceleration, yaw velocity (obtained by gyroscope) and the lat-

eral adhesion coefficient. The lateral adhesion coefficient is obtained by identifying the steer-

ing angle. This approach relies on the ability of GPS to display coordinates precisely. Finally,

the slope of the curve between friction coefficient and slip ratio is defined as the normalized

brake stiffness. According to tire friction characteristics, tires have the maximum braking

force when the normalized brake stiffness is zero. The Euler approximation theory and the

least square algorithm are used to determine the generalized braking stiffness of the zero posi-

tion, which is used to determine the sliding state. These methods are difficult to apply to the

real car for several reasons including timeliness, accuracy of recognition and cost. At present,

these methods are appropriate for specific areas, or are still at the stage of theoretical research,

lack of real vehicle test to verify it. Li et al. proposed a comprehensive tire-road friction coeffi-

cient estimation method which is based on signal fusion method under complex maneuvering

operations inclusive of braking, driving and steering. This method is relatively timely and

accurate to satisfy the control demands [22].

Tire-road friction estimation and TCS for EV
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According to the actual state of the electric wheel, an ideal model for the inertia of the non-

slip wheel is established based on the tire-road friction estimation method. The model’s self-

motion adaptation method is used to identify the difference inertial parameters between the

the actual electric-driving wheels and the ideal model, which determines the sliding state of the

wheel. This method works well in certain conditions, but because of a wide variety of vehicles

and roads, it is not suitable for all driving conditions [24]. Velimir C´ irovic proposed a new

approach for improving of the longitudinal wheel slip control based on dynamic neural net-

works. This approach is based on dynamic adaptation of the brake actuation pressure, during

a braking cycle, according to the identified maximum adhesion coefficient between the wheel

and road [25].

From the above discussion, it is urgent demand to detect tire-road friction coefficient in

vehicle dynamics and control. This paper advances a theory which is based on real-time sensor

signals of speed and driving torque of motorized wheels to identify the electric-driving wheel

slip ratio and the optimum slip ratio, and proposes a traction control strategy which is imple-

mented based on the theory. At the same time, we also consider the algorithm is highly effi-

cient in solution and calculation, and can be used in establishing real-time control system.

Therefore, the approach is simple and dynamic-response is quick.

2. Estimation of optimum slip ratio on driving roads in real-time

2.1 Estimation of road adhesion for electric vehicle with motorized

wheels

In order to solve the difference problem, the electric vehicle drive motor adopts torque control.

The one quarter vehicle model is shown in Fig 1, the wheel and body dynamics equation can

be expressed:

Iw
dw
dt
¼ Tm � Fd:r ð1Þ

M
dV
dt
¼ Fd ð2Þ

uðsÞ ¼
Fd

N
ð3Þ

Where Tm is the torque transmitted from the motor (N�m); Fd is the friction between the

road and the tire (N); Iw is the moment of inertia of the wheel (kg�m2); M is the sprung mass

acting on a single wheel (kg); w is the rotation speed of the wheels (rad/s); V is the body veloc-

ity (m/s); Fd is the traction; and the normalization traction can be shown to be:

uðsÞ ¼
1

Nr
Tm � Iw

dw
dt

� �

ð4Þ

Where u is the adhesion coefficient between tire and road surface which is a function of wheel

slip rate. The friction characteristics can be calculated using the wheel torque and rotational

speed. The formula is also applying to conventional vehicles, but it is difficult to obtain the

accurate driving torque of each wheel in real-time due to the traditional automotive transmis-

sion system, and it is difficult to estimate the friction characteristics based on Eq 4. For the

electric vehicle driving by in-wheel motor, the torque and velocity of the wheel can be easily

obtained. Therefore, the Eq (4) can be used to calculate the road friction characteristics.

Tire-road friction estimation and TCS for EV
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2.2 Estimation strategy for optimum slip ratio in real-time

Fig 2 shows the characteristic curve of the road slip. Where s0 is the slip rate corresponding to

the maximum adhesion factor between the road and the tire umax. Fig 2(B) is the characteristic

curve of the derivative of the road adhesion and slip rate du/ds. It can be seen that when s< s0,

then du/ds>0. At this stage, the adhesion coefficient increases as the slip rate increases, the

wheel does not slip and the wheel are in a steady state. When s> s0, then du/ds<0. At this

stage, the adhesion coefficient decreases as the slip rate increases, the wheel begins to slip and

the wheel is in an unstable state.

Fig 2. Relations for adhesion coefficient and slip ratio:(a) adhesion factor with slip ratio; (b)du/ds with slip

ratio.

https://doi.org/10.1371/journal.pone.0179526.g002

Fig 1. Quarter model of vehicle.

https://doi.org/10.1371/journal.pone.0179526.g001
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When the vehicle is running, the variation of the adhesion coefficient and the slip rate

between the tire and the road surface has a time course, thus:

duðsÞ
ds
¼

du
dt
:
dt
ds

ð5Þ

The sign of
duðsÞ

ds can be shown by du
dt :

ds
dt. According to the characteristics of the adhesion coeffi-

cient and the slip ratio, the following rules can be obtained.

For accelerating wheels:

1. When the wheel is running in the non-stable state, this time s> s0, the adhesion coefficient

decreases with time and slip ratio increases with time. Then:

du
dt
< 0;

ds
dt
> 0 ð6Þ

2. When the wheel is running in a stable state, this time s� s0, both the adhesion coefficient

and slip ratio increase with time.

du
dt
� 0;

ds
dt
> 0 ð7Þ

For decelerating wheels:

1. When the wheel is running in a non-stable state, this time s> s0, the adhesion coefficient

increases with time and the slip ratio decreases with time. Then:

du
dt
> 0;

ds
dt
< 0 ð8Þ

2. When the wheel is running in a stable state, this time s� s0, both the adhesion coefficient

and slip ratio increase with time.

du
dt
� 0;

ds
dt
< 0 ð9Þ

Based on the above analysis, when the wheel is running from the stable state to the non-sta-

ble state, the wheel begins to slide (du
dt<0). du

dt :
ds
dt>0 determines that the wheel runs from an

unstable state to a stable state. Thus:

du
dt
¼

d 1

Nr Tm � Iw
dw
dt

� �� �

dt
ð10Þ

For the road adhesion coefficient, the vertical load on the wheel and the wheel radius

change little. Therefore, the vertical load of the wheel can be regarded as a constant, hence

du
dt
¼

1

Nr
d Tm � Iw

dw
dt

� �

dt
ð11Þ

Tire-road friction estimation and TCS for EV
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For in-wheel motor driving, it is easy to accurately estimate the torque Tm and the wheel

rotation speed in real time. By detecting the change of
d Tm� Iw

dw
dtð Þ

dt , the wheel slip state can be

identified. In order to conveniently express, the following equation is presented.

ε ¼
d Tm � Iw

dw
dt

� �

dt
ð12Þ

s ¼
ds
dt

ð13Þ

In practical application, the wheel skidding state can be estimated by judging the positive

and negative of the two cycles of ε, namely ε(k−1) and ε(k). In the accelerating process, if

ε(k−1)>0 and ε(k)<0, the wheel begins to slip. The slip ratio on this point is the optimum

slip ratio S0. Hence, the real-time calculation of peak adhesion coefficient can be achieved. In

the decelerating process, if ε × σ>0, the wheel stops slipping. The estimation method is achi-

eved by using the dynamic parameters of the wheel.

The flow chart of the estimation method is shown in Fig 3. flag is the indicator of wheel slip-

page, which is used to determine whether the wheel is running in skidding state.

Fig 3. Estimation logic for optimal slip ratio.

https://doi.org/10.1371/journal.pone.0179526.g003
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2.3 Vehicle velocity estimation

It is difficult to obtain the accurate speed when using the conventional powertrain to control

TCS. According to the method proposed in this paper, it is found that the wheel slip of the

electric wheel drive vehicle can be monitored in real time. Therefore, the speed calculation

becomes easier. For a straight-driving car, if you do not consider the road roughness caused by

the vertical component of the wheel speed, the wheel speed of each wheel is equal to equal

speed. While steering, the kinematic relationship between the horizontal component of each

wheel’s center speed and vehicle speed is as follows:

nho1 ¼ uþ
1

2
Bg � lf qsinjyj

� �

cosdf þ ðnþ agÞsindf

nho2 ¼ uþ
1

2
Bgþ lf qsinjyj

� �

nho3 ¼ u �
1

2
Bg � lf qsinjyj

� �

cosdf þ ðnþ agÞsindf

nho4 ¼ u �
1

2
Bgþ lf qsinjyj

� �

)

ð14Þ

u ¼ Vcosb n ¼ Vsinb ð15Þ

It ignores the pitching motion factor and considering the small angle relationship cos β = 1,

sin β = 0. The expression above can be simplified as:

nho1 ¼ V þ
1

2
Bg

� �

cosdf þ ðagÞsindf

nho2 ¼ V þ
1

2
Bg

� �

nho3 ¼ V �
1

2
Bg

� �

cosdf þ ðagÞsindf

nho4 ¼ V �
1

2
Bg

� �

)

ð16Þ

In Eq (16), the wheel speed can be expressed as a function of speed and steering angle.

Steering Angle can be achieved by the steering wheel Angle sensor or steering system ECU,

while the vehicle speed can be calculated by the product of the wheel speed and the wheel

radius. In this article, we mainly discuss whether the electric driving wheel slip can be moni-

tored and the optimal slip ratio recognition theory, we can calculate the vehicle speed via the

none-slipping wheel, ignoring the slipping wheels.

The principles are:

□ During the straight driving, the vehicle speed is the non-skid minimum wheel velocity. If

all the wheels are sliding, the system reduce the four-wheel drive torque. Meanwhile, the

minimum speed of the four wheels is continuously detected and as the speed signal slip

rate is calculated until there is a wheel back to the non-skid state. Then, non-skid wheel

speed is used to calculate the speed to control the other wheels.

□ During the turning driving, the vehicle speed can be estimated by rotation difference,

steering angle in Eq (16).

Tire-road friction estimation and TCS for EV
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2.4 Control system structure of vehicles driven by in-wheel motors

The TCS structure of the in-wheel motor driven system is showed in Fig 4. The system con-

sisted of the filter module, slipping recognition module, vehicle speed calculating module and

the PID control module. According to the input motor torque, rotating speed and wheel center

speed, the slipping recognition module can identify whether the wheel slips and gives the sign

flag, the slip rate λ and the corresponding slip rate λo of the maximum adhesion coefficient.

The slipping rate recognition module has to carry out the derivative calculation on the motor

torque and the motor rotating speed. However, the real output motor torque and rotating

speed have high frequency noise. To avoid the high frequency oscillation after derivation, the

low pass filter is designed for the output signal processing from the motors. The control of

traction torque is implemented by adjusting the input torque command of the control system.

The wheel center speed module determines the sliding status based on the flag value, and

then calculates the speed of each wheel according to the speed of the non-sliding wheel.

According to the error between λ0 and λ, the PID controller provides the negative feedback

to the torque command. When the slipping recognition module recognizes that there is no

slipping, the outputs of λ0 and λ are 0, thus the PID controller is in idle status.

3. Typical simulation experiments and results

3.1 verify the accuracy of the model

For the validation, the dynamics model with 18 freedoms for electric vehicle with motorized

wheels is made, inclusive of the six freedoms of the vehicle body and the twelve freedoms for

the rotation, steering and vertical motion of the four wheels. The “Magic formula” is used in

the tire model and the driving motor is induction motor. Based on the model, the simulation

desktop of the electric vehicle with motorized wheels is build using MATLAB/Simulink. With

high precision and less parameters, the desktop can simulate many kinds driving mode of

vehicle. The simulation validation of road adhesion estimation method is carried out by this

model. Parameters of the test vehicles are shown in Table 1. The maximum power of the

motor is 25kW and maximum torque is 400N�m, as shown in Table 2.

The vehicle running at 50 km/h and after 2 s, vehicle began to accelerate quickly. The driv-

ing torque of the wheel is shown in Fig 5 and the road adhesion/slip ratios are presented in Fig

6. The vertical ordinate in the Fig 6 is the curve of the road surface adhesion coefficient (u), the

Fig 4. TCS structure of in-wheel motor driven system.

https://doi.org/10.1371/journal.pone.0179526.g004
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optimal slip ratio (λ0) and the maximum adhesion coefficient (umax). The simulation show

that the detector has the ability to capture the tire and road adhesion characteristics of the

inflection point.

The optimal slip ratio (λ0), the max road adhesion(umax), the real slip ratio (λ) and road

adhesion (u) are got by road adhesion identifier which is designed based on the presented esti-

mation method. It can be seen that road friction factor increases to peak value quickly and

then decreases quickly because of the wheel skidding. After 6s, the road friction increases

quickly because the driving torque decreases and wheel slip ratio decrease too. The road fric-

tion factor increases to a peak value when the slip ratio is an optimal slip ratio. The optimal

slip ratio and maximum road adhesion are accurately calculated as well as the wheel skidding

state.

3.2 Simulations of acceleration under low adhesion road

The road adhesion characteristic is shown in Fig 7 while Fig 8 shows the vehicle speed for the

TCS and no TCS. It clearly shows that the vehicle’s acceleration ability is enhanced obviously

and the vehicle can accelerate to the target speed smoothly under the action of TCS.

Fig 9 is the wheel rotating speed without TCS control. From it, there is no slipping on rear

wheel during the whole acceleration process, while the front wheel accelerates sharply to the

maximum slip rate in the end. Fig 10 is the wheel rotating speed with TCS control. Under the

control of TCS, the slip rate can be maintained under a certain value to get the maximum

traction.

Fig 11 displays the comparison of road adhesion coefficient and slip rate with and without

TCS control. Without TCS control, the slip rate is close to 0.7, while the adhesion coefficient is

obviously smaller than the maximum adhesion coefficient. With the effect of TCS, the wheel

slip rate can be maintained around the optimum slip rate, which is shown in Fig 7. While the

road adhesion coefficient keeps the maximum value to take the full advantage of the capability

of road adhesion. Fig 12 is the wheel traction variation with and without TCS control. When

accelerating, there is no big difference between the two controllers. However, the differential

value takes the wheel slip rate beyond the slip rate under relative maximum road adhesion,

thus taking the wheel movement into the unstable area, and results in over-slipping of the

wheel.

4. Road test

To verify the control algorithm, the vehicle tests were performed on the campus of Jilin Uni-

versity. The electric vehicle(EV) with electric motored wheels is modified on the basis of the

gas engine, make full use of the original car parts including the body, suspension system,

brakes, etc. At the same time, remove the original vehicle power system, fuel tank and other

Table 1. Vehicle specifications for simulation.

Total Mass 1483 kg Wheelbase 2.662 m

Wheel Inertia 3.11 kg.m2 Tread 1.44 m

Wheel Mass 38 kg Wheel Radius 0.285 m

https://doi.org/10.1371/journal.pone.0179526.t001

Table 2. Main specifications for driving motor.

Rated Power kw 17 Max Power kw 25

Rated Torque N�m 180 Max Torque N�m 400

https://doi.org/10.1371/journal.pone.0179526.t002

Tire-road friction estimation and TCS for EV
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parts, make more space for 4 wheel motor and its controller, the power batteries, vehicle

powertrain control (VCU) and strong electric control box(including DC-DC, Power electric

relay). The tested car is shown in Fig 13.

The battery placed in the engine nacelle, four-wheel motor is respectively embedded in the

four wheels, four electric motor controllers are respectively arranged on both sides of the

box with fixed in the luggage compartment. The VCU uses Micro-autobox Dspace, which is

placed in the back seat. Simultaneously, we installed the wheel speed sensor, the dual axis

acceleration sensor and the yaw rate sensor. The Automobile tires were made of snow tires.

The tests were demonstrated on icy road with maneuvering operations for TCS runs. The test

items were carried out under the condition of full throttle and light load. As shown in Fig 14.

Fig 15 shows the original wheel speed and filtered wheel speed. Fig 16 shows the original

wheel torque and filtered wheel torque. Fig 15 and Fig 16 shows the test result of driving

Fig 5. Wheel driving torque.

https://doi.org/10.1371/journal.pone.0179526.g005

Fig 6. Output by road identifier.

https://doi.org/10.1371/journal.pone.0179526.g006
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condition with an input of high throttle percentage on icy road. It can be seen the filtered sig-

nals reflect the changes of the original data with a time delay.

Fig 17 shows the slip ratio and the adhesion coefficient, which are achieved by calculating

the data using Eq 4. It can be seen that the driving wheel began to skid with a large slip ratio

from the non-skid state (14 s ~ 16 s), and then the wheel enters into an oscillatory state

between non-skid and skid (after 16 s).

The adhesion coefficient maintains a larger value at the rising stage of the slip ratio, and the

adhesion coefficient began to decrease when the slip ratio reaches a certain value. A higher slip

ratio appears between 14s-16s, the adhesion coefficient shows a "bottom" trend during the

period. When the slip ratio is reduced, the adhesion coefficient begins to rise again, and then

the adhesion coefficient becomes smaller but the slip ratio also decreases at the same time.

Another reason the slip ratio decreased with the adhesion coefficient is the ice-snow composite

Fig 7. Adhesion characteristics of Road I.

https://doi.org/10.1371/journal.pone.0179526.g007

Fig 8. Vehicle speed variation.

https://doi.org/10.1371/journal.pone.0179526.g008
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road, the road becomes more slippery because of the skid of the wheel, and the peak adhesion

coefficient is decreased. At 24 s, the sudden increase in adhesion coefficient which is output by

the identifier is caused by the road with a high adhesion coefficient onto which the car is run-

ning. The corresponding changes of the torque curve in Fig 15 also illustrates this point. Thus,

the calculated adhesion coefficient is realistic.

Fig 16 shows the output of the wheel movement by the presented road identifier. Fig 18A

shows the indicator of the wheel skid state where "1" stands for the state of no skid, and "0"

Fig 9. Wheel rotating speed without TCS control.

https://doi.org/10.1371/journal.pone.0179526.g009

Fig 10. Wheel rotating speed with TCS control.

https://doi.org/10.1371/journal.pone.0179526.g010
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stands for the state of skid. Fig 18B shows the optimum slip ratio output by the identifier when

in the skid state. Fig 18C shows the peak adhesion coefficient when in the skid state. When the

wheels do not skid, the optimum slip ratio and the peak adhesion coefficient output is 0.

From the above figures, the identifier can accurately identify the skid state according to the

changes of the road adhesion coefficient and the slip ratio and output the optimum slip ratio

and the peak adhesion coefficient. The inconstant skid states output by the identifier is caused

by the fluctuation of the adhesion coefficient and the slip ratio.

5. Conclusion

Traction control system (TCS) for in-wheel-motor (IWM) configuration electric vehicles

(EV) has advantages, the performance of the control system, comparing with the traditional

Fig 11. Comparison of adhesion coefficient and slipping rate.

https://doi.org/10.1371/journal.pone.0179526.g011

Fig 12. Comparison of traction variation.

https://doi.org/10.1371/journal.pone.0179526.g012
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method, the method proposed here significantly decreases the time and the remarkable

improve recognition ratio, and the feedback slip control appear to be better than with a con-

ventional powertrain.

Fig 13. The tested vehicle.

https://doi.org/10.1371/journal.pone.0179526.g013

Fig 14. The overall vehicle arrangement.

https://doi.org/10.1371/journal.pone.0179526.g014
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This paper attempts to identify in real-time the optimal longitudinal slip ratio and the cor-

responding maximum available road friction when drive torque exceeds or is close to the avail-

able road friction. It proposes the identification of the peak longitudinal force based on the

sign change of the derivative of calculated longitudinal force. Although the algorithm is rela-

tively simple, but it can enhance the speed and computing efficiency. Furthermore, the non-

skid minimum wheel velocity is used to estimate the chassis velocity, which are key parameters

of the TCS. The estimated slip ratio ensures that the vehicle stay within reasonable ranges.

Finally, the simulation and experimental results show that the proposed algorithm can identify

the variation of road surface adhesion characteristics without wheel and chassis velocity sen-

sors. The traction control system and dynamic control system for the development of high per-

formance and low cost electric wheel vehicle are presented.

Fig 15. Original wheel speed and filtered.

https://doi.org/10.1371/journal.pone.0179526.g015

Fig 16. Original wheel torque and filtered.

https://doi.org/10.1371/journal.pone.0179526.g016
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